Cross-domain Paraphrasing For Improving Language Modelling Using Out-of-domain Data

Xunying Liu
CUED NST Team

May 23th 2013

Cambridge University Engineering Department
Outline

• **This talk summarizes recent research on using cross-domain paraphrasing to improve language modelling using out-of-domain data.**

• **Main objectives to achieve under NST:**
 - improving domain and context coverage for language models;
 - structured modelling of domain commonalities and variabilities;
 - minimising demand for in-domain training data;
 - to be rapidly deployable for a new target domain or situation.

• **Initial results on two state-of-the-art LVCSR tasks:**
 - conversational telephone speech transcription;
 - multi-genre media archive transcription.
Introduction

- **Language modelling using data from different domains is difficult:**
 - more challenging when only limited amounts of in-domain data is available;
 - out-of-domain data are often available in large quantities;
 - but they are less useful due to domain mismatch.

- **Variability in generation rules significantly alters surface word sequence:**
 - thus introduces mismatch against other related data generated via alternative realizations associated with characteristics of e.g. a different domain.

- **Directly modelling out-of-domain data or std. data/model combination:**
 - ignores domain commonalities/specialties, inefficient use of OOD data;
 - results in poor in-domain data coverage using, e.g., n-gram LMs.

- **Alternatively possible to structurally exploit domain independent and dependent characteristics of in-domain and out-of-domain training data.**
Cross-domain Paraphrasing

- **Out-of-domain data contains rich domain independent generation rules:**
 - representing, e.g., paraphrastic relationships between words/phrases/sentences;
 - cross-domain paraphrasing expands limited in-domain training material;
 - should produce richer context coverage of in-domain data.

- **In-domain data viewed as paraphrases of related out-of-domain data:**
 - assuming some overlap in topic and meaning with in-domain data;
 - generated using alternative domain specific realization rules representing;
 - e.g., disfluency/non-grammaticality/informal style of conversational data;
 - cross-domain paraphrasing gives “in-domain like” paraphrases of OOD data;
 - more effective use of out-of-domain data to improve in-domain LM coverage.

- **Cross-domain paraphrasing leverages strengths of ID and OOD data:**
 - wider coverage than data/model combi. or in-domain paraphrases only;
 - *xdomain paraphrases used to improve paraphrastic LM performance.*
Paraphrastic Language Models

- **Flexibly model word/phrase/sentence level paraphrase mapping:**
 - phrase level paraphrase model generates multiple paraphrase variants;
 - language model probabilities estimated in paraphrased domain;
 - by maximizing marginal probability of paraphrase sequences.

- **Modelling alternative expressions of same meaning:**
 - intuitive and interpretable smoothing mechanism;
 - improves domain, context coverage and generalization;
 - can incorporate additional phrase level linguistic constraints.

- **Appropriate paraphrase pair extraction scheme is important:**
 - impractical to obtain expert semantic labelling on phrase level;
 - **automatic paraphrase pair extraction scheme is preferred.**
Paraphrastic Language Models (cont)

- **n-gram phrase based paraphrase learning from standard text:**
 - std. text in large amounts with no semantic labelling to improve coverage;
 - phrases often sharing same L/R contexts more likely to be paraphrases;
 - syntactic constraints may be added to improve grammaticality.

- **WFST based efficient training data paraphrase lattice generation:**
 - well defined algorithms available, no special purpose decoder;
 - lattice fwdbwd pass generates statistics for paraphrastic LM training.

- **Linear interpolation with standard n-gram LMs to achieve:**
 - good balance between context coverage and discrimination.

\[
P(\tilde{w}|\tilde{h}) = \lambda P_{NG}(\tilde{w}|\tilde{h}) + (1 - \lambda) P_{PLM}(\tilde{w}|\tilde{h})
\]

- **Paraphrase learning/generation within same domain in previous work:**
 - possible to further improve performance via xdomain paraphrasing.
Cross-domain Paraphrastic Language Models

- **Both in and cross domain paraphrases generated for PLM training.**

- **Generating more ID data using OOD data trained paraphrase model:**
 - retaining sentential structure, topic coverage and semantics of ID data;
 - exploiting additional rich domain independent paraphrases in OOD data.

- **Reducing OOD data domain mismatch using ID paraphrase model:**
 - transforms OOD data into “in-domain like” data via a directed paraphrasing;
 - by restraining target paraphrases found only in the in-domain data;
 - injecting domain specific characteristics, e.g. disfluency and informal style.

- **Linear interpolation with standard \(n \)-gram LMs:**
 - In-domain and cross-domain paraphrases used to build separate PLMs.

\[
P(\tilde{w}|\tilde{h}) = \lambda_{NG} P_{NG}(\tilde{w}|\tilde{h}) + \lambda_{PLM}^{ID} P_{PLM}^{ID}(\tilde{w}|\tilde{h}) + \lambda_{PLM}^{XD} P_{PLM}^{XD}(\tilde{w}|\tilde{h})
\]
In/Cross-domain Paraphrasing for Conversational Data (e.g.)

Original sentence: And I generally prefer

In-domain Paraphrases: 545M words ID data, 3M paraphrase pairs.
And I really like
I guess I generally like
So I appreciate
‘Cause I love
Um I wish

...

Cross-domain Paraphrases: 490M words BN data, 2.9M paraphrase pairs.
Actually I love
And I honestly generally hope
Or I just really intend
Seemed like I always very much like
And more remarkably I usually prefer

...
In/Cross-domain Paraphrasing for Broadcast News (e.g.)

Original sentence: Economy is a big problem for the Bush administration

In-domain Paraphrases: 490M words ID data, 2.9M paraphrase pairs.
Economy is an uphill battle very much for the White House
Economy will be a main problem for the United States
Economy is a real challenge for the administration
Economy represents a big trouble for the Bush presidency
Economy constitutes a large problem for the Bush government

Cross-domain Paraphrases: 545M word conv. data, 3M paraphrase pairs.
Economy is a heck of a uh problem for the president
Economy is a big big deal for the president
Economy is an awful big problem for I mean president
Economy is like a big problem for uh the Bush administration
Economy of course that’s a big problem I think the president

...
Experiments on Conversational Telephone Speech

- **Adapted 2000 hour Fisher data trained PLP MPE acoustic models:**
 - 545M words ID (LDC Fisher + UWWeb) data, 490M words OOD BN text;
 - 5.9M statistically derived and 480k expert (WordNet) paraphrase pairs;

<table>
<thead>
<tr>
<th>LM</th>
<th>Paraphrastic</th>
<th>Cross-domain</th>
<th>Miss Rate(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3g</td>
</tr>
<tr>
<td>w4g</td>
<td>×</td>
<td>×</td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td>√</td>
<td>×</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>√</td>
<td>√</td>
<td>13.1</td>
</tr>
</tbody>
</table>

- **Consistent n-gram coverage improvements over baseline paraphrastic LM trained without using cross-domain generated paraphrases.**

- **19%-27% 3/4-gram miss rate reduction (30% reduction from xdomain paraphrasing) over baseline 4-gram LM built using model interpolation.**
Experiments on Conversational Telephone Speech (cont)

- 4-gram word/phrase level LMs intersected to construct multi-level LMs.
- word, class-based, multi-level baseline and paraphrastic LMs evaluated.

<table>
<thead>
<tr>
<th>LM</th>
<th>Paraphrastic</th>
<th>Cross-domain</th>
<th>dev04</th>
</tr>
</thead>
<tbody>
<tr>
<td>w4g</td>
<td></td>
<td></td>
<td>16.6</td>
</tr>
<tr>
<td>w4g + clslm</td>
<td>×</td>
<td>×</td>
<td>16.4</td>
</tr>
<tr>
<td>w4g ◦ p4g</td>
<td></td>
<td></td>
<td>16.4</td>
</tr>
<tr>
<td>w4g</td>
<td></td>
<td>✓</td>
<td>16.3</td>
</tr>
<tr>
<td>w4g ◦ p4g</td>
<td>✓</td>
<td>×</td>
<td>16.1</td>
</tr>
<tr>
<td>w4g</td>
<td></td>
<td>✓</td>
<td>16.2</td>
</tr>
<tr>
<td>w4g ◦ p4g</td>
<td>✓</td>
<td>✓</td>
<td>16.0</td>
</tr>
</tbody>
</table>

- Consistent improvements over word and multi-level baseline PLMs.
- WER reduction of 0.6% abs. (4% rel.) over word 4-gram baseline.
Experiments on Media Archive Data

- **21 hour BBC media archive data, adapted PLP MPE acoustic models:**
 - 250k words ID BBC transcripts, 490M words OOD BN data;
 - 2.9M statistically derived and 480k expert (WordNet) paraphrase pairs.

<table>
<thead>
<tr>
<th>LM</th>
<th>Paraphrastic</th>
<th>Cross-domain</th>
<th>bbcdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>w4g</td>
<td></td>
<td></td>
<td>31.3</td>
</tr>
<tr>
<td>w4g + clsIm</td>
<td>✗</td>
<td>✗</td>
<td>31.2</td>
</tr>
<tr>
<td>w4g ◦ p4g</td>
<td></td>
<td></td>
<td>31.0</td>
</tr>
<tr>
<td>w4g</td>
<td>✓</td>
<td></td>
<td>30.9</td>
</tr>
<tr>
<td>w4g ◦ p4g</td>
<td>✓</td>
<td>✗</td>
<td>30.7</td>
</tr>
<tr>
<td>w4g</td>
<td>✓</td>
<td>✓</td>
<td>30.7</td>
</tr>
<tr>
<td>w4g ◦ p4g</td>
<td>✓</td>
<td>✓</td>
<td>30.5</td>
</tr>
</tbody>
</table>

- **15%-21% 3/4-gram miss rate reduction** (35% reduction from xdomain paraphrasing) over baseline 4-gram LM built using model interpolation.
- **WER reduction of 0.8% abs. (3% rel.)** over word 4-gram baseline.
Conclusion

- Xdomain paraphrases improve LM domain coverage and generalization:
 - naturally link language generation with language modelling;
 - structured modelling of domain independent/dependent characteristics;
 - generate in-domain training data from rich out-of-domain data;
 - minimise demand for in-domain training data;
 - reduce domain mismatch and more efficient use of out-of-domain data;
 - can be rapidly deployed in under-resourced new domains.