Sequence-discriminative training of deep neural networks

Joint work with Karel Vesely, Lukas Burget, and Daniel Povey

23 May 2013
Sequence-discriminative training of HMMs

- Conditional maximum likelihood (Nádas, 1983) and Maximum mutual information (Bahl et. al 1986) for training GMM parameters
 - Both are identical when LM is fixed during training
 - MI between word and acoustic sequences
- Efficient extended Baum-Welch (EBW) training proposed by Normandin in 1991
- First practical large-scale system in 2000 from Cambridge (Povey & Woodland)
 - Posteriors computed over lattices
 - Sequence-discrimination better than frame-discrimination
Training an MLP

- Trained using *error backpropagation*
- Requires gradient of output w.r.t. activations $a_{ut}(s)$ at the output layer

$$y_{ut}(s) \triangleq P(s | o_{ut}) = \frac{\exp\{a_{ut}(s)\}}{\sum_{s'} \exp\{a_{ut}(s')\}}$$
The cross-entropy criteria

\[F_{CE} = - \sum_u \sum_t \log y_{ut}(s_{ut}), \]

\[\frac{\partial F_{CE}}{\partial a_{ut}(s)} = y_{ut}(s) - \delta_{s; s_{ut}} \]

- Expected cross-entropy between reference labels and predicted distribution \(y(t) \)
- Minimizing CE same as maximizing mutual information between \(y(t) \) and reference
Training an MLP sequence-discriminatively

- Bridle & Dodd’s Alphanet (1991) was trained in a sequence-discriminative fashion
- Revived by Kingsbury (2009) using lattice-based computations

\[
\frac{\partial F_{CE}}{\partial a_{ut}(s)} = y_{ut}(s) - \delta_{s;s_{ut}} \\
\frac{\partial F_{MMI}}{\partial a_{ut}(s)} = \kappa(\delta_{s;s_{ut}} - \gamma_{ut}^{DEN}(s))
\]
Maximum-mutual information

\[
\mathcal{F}_{MMI} = \sum_u \log \frac{p(O_u | S_u)^\kappa P(W_u)}{\sum_W p(O_u | S)^\kappa P(W)},
\]

\[
\frac{\partial \mathcal{F}_{MMI}}{\partial a_{ut}(s)} = \kappa (\delta_{s; s_{ut}} - \gamma_{ut}^{DEN}(s))
\]

- Here we assume that numerator stats collected through forced alignment
- Possible to use forward-backward and use \(\gamma_{ut}^{NUM}(s)\)
Minimum Bayes Risk

\[F_{MBR} = \sum_u \frac{\sum_W p(O_u|S)^\kappa P(W) A(W, W_u)}{\sum_{W'} p(O_u|S)^\kappa P(W')} \],

\[\frac{\partial F_{MBR}}{\partial a_{ut}(s)} = \kappa \gamma_{ut}^{DEN} (s) \{ \bar{A}_u(s_t = s) - \bar{A}_u \} \]

- \(A(W, W_u) \) is the accuracy of phone labels (for MPE) or state labels (for sMBR)
- \(A_u(s_t = s) \) is the average accuracy of all paths passing through state \(s \) at time \(t \)
Boosted MMI

\[\mathcal{F}_{BMMI} = \sum_u \log \frac{p(O_u|S_u)^\kappa P(W_u)}{\sum_W p(O_u|S)^\kappa P(W) e^{-b A(W,W_u)}} \]

- “Boosts” the likelihood of paths that contain more errors --- state-of-the-art training criteria for GMMs
- May also be interpreted as incorporating a margin term in the MMI objective (Heigold, et al. 2008)
- Gradient computation identical to that for MMIE
Switchboard setup

- 300-hours Switchboard conversational telephone speech recognition
- Trained on Switchboard-1 Release 2 (LDC97S62)
- MSU transcripts, 30K-word lexicon
- Tested on Hub5 ’00 and Hub5 ’01 test sets
- 3-gram LM trained on 3M words of training transcripts interpolated with 11M words of Fisher-1
 - Interpolated KN smoothing; 950K 3-grams, 1064K 2-grams
- AMs trained on 40-dim LDA+STC features from 7 frames (±3) of 13-dim MFCC (C0-C12)
GMM-HMM Baselines (on Hub5 ’00)

<table>
<thead>
<tr>
<th>System</th>
<th>Hours</th>
<th>SWB</th>
<th>CHE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML SAT GMM</td>
<td>300</td>
<td>21.2</td>
<td>36.4</td>
<td>28.8</td>
</tr>
<tr>
<td>BMMI SAT GMM</td>
<td>300</td>
<td>18.6</td>
<td>33.0</td>
<td>25.8</td>
</tr>
<tr>
<td>ML SAT GMM</td>
<td>110</td>
<td>23.8</td>
<td>38.6</td>
<td>31.2</td>
</tr>
<tr>
<td>BMMI SAT GMM</td>
<td>110</td>
<td>21.0</td>
<td>35.6</td>
<td>28.3</td>
</tr>
</tbody>
</table>

- 300-hour models have 8859 tied triphone states and 200K Gaussians
- 110-hour models have 4234 tied triphone states and 90K Gaussians
- Speaker adaptive training (SAT) with a single FMLLR transform
- BMMI uses a boosting factor of \(b = 0.1 \)
DNN-HMM results (on Hub5 ’00)

<table>
<thead>
<tr>
<th>System</th>
<th>Hours</th>
<th>SWB</th>
<th>CHE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMMI SAT GMM</td>
<td>300</td>
<td>18.6</td>
<td>33.0</td>
<td>25.8</td>
</tr>
<tr>
<td>BMMI SAT GMM</td>
<td>110</td>
<td>21.0</td>
<td>35.6</td>
<td>28.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Init</th>
<th>Hours</th>
<th>SWB</th>
<th>CHE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNN 7 layers</td>
<td>RBM</td>
<td>300</td>
<td>14.2</td>
<td>25.7</td>
<td>20.0</td>
</tr>
<tr>
<td>DNN 5 layers</td>
<td>Rand</td>
<td>110</td>
<td>17.1</td>
<td>29.6</td>
<td>23.4</td>
</tr>
</tbody>
</table>

- DNNs trained on 40dim LDA+STC+FMLLR features
- Input is 11 frames (± 5) of the 40-dim features for the 300hr model or 9 frames for the 110hr model
- Trained using SGD with 256-frame mini-batches and frame shuffling; alignments from GMM BMMI system
MMI-training of DNNs

- CE training using DNN alignments (better numerator) accounts for about half of MMI improvement
- MMI seen to overfit after 2 iterations
- Smaller learning rate (about 0.1 of CE lr) required
Segments with missing reference in lattice

- Reference for some segments missing from lattice
 - Search errors; poor match of acoustics; error in reference
- Mostly short segments (70% less than 0.5s) but they disproportionately affect the gradient
- Remove these from MMI training
The frame-rejection heuristic reduces the amount of training data by 2.5% but leads to more stable learning.
Comparing different criteria

- Not much difference between different sequence-discriminative criteria
Lattice regeneration

- Regenerating lattices after each iteration improves performance a little but it is computationally expensive
Results with 300-hour training set

System	Hub5 ’00		Hub5 ’01				
	SWB	CHE	Total	SWB	SWB2P3	SWB-Cell	Total
GMM BMMI	18.6	33.0	25.8	18.9	24.5	30.1	24.6
DNN CE	14.2	25.7	20.0	14.5	19.0	25.3	19.8
DNN MMI	12.9	24.6	18.8	13.3	17.8	23.7	18.4
DNN BMMI	12.9	24.5	18.7	13.2	17.8	23.5	18.3
DNN MPE	12.9	24.1	18.5	13.2	17.7	23.4	18.2
DNN sMBR	12.6	24.1	18.4	13.0	17.7	22.9	18.0

- sMBR found to be slightly better than other sequence-discriminative criteria (observation congruent to those of IBM)
- The current best results on Switchboard!
In poster session: cross-lingual pretraining

- Stacked RBMs trained on Spanish, Portuguese, Swedish, and German
- Finetuned using 1-hour, 5-hours, and 15-hours of German
In poster session: hat-swapping DNNs

The name hat-swapping was suggested by John Bridle
The Kaldi speech recognition toolkit

KALDI http://kaldi.sf.net/

- Free (Apache v2.0 license), open-source, speech recognition toolkit
 - Written in C++ (supported on common *NIX platforms)
 - FST-based training & decoding using OpenFST
 - Supports standard GMMs, Subspace GMMs, and DNNs
 - Complete reproducible recipes with state-of-the-art results on several corpora

According to legend, Kaldi was the Ethiopian goatherd who discovered the coffee plant.