At the outset of NST we identified several weaknesses with speech technology systems:

- Fragile operation across domains
- Synthesis and recognition developed independently
- Reliance on supervised approaches, manually transcribed training data
- Models for synthesis and recognition include relatively little speech knowledge
- Models only weakly factor the underlying sources of variability
- Systems react crudely (if at all) to the context / environment

These weaknesses still drive our objectives.
NST Technical Objectives

• Learning and Adaptation
 • learning to compactly represent speech and to adapt to new scenarios and speaking styles

• Natural Speech Transcription
 • Speech recognition systems that operate seamlessly across domain and acoustic environment

• Natural Speech Synthesis
 • Controllable synthesisers that learn from data, and can generate expressive conversational speech

• Exemplar Applications
 • prototype deployment in applications, focusing on health/social domain, media, and the needs of User Group stakeholders
Highlights 2014-15

• Best paper awards at IEEE SLT-2015, IEEE ICASSP-2014

• Open source software – HTK, Kaldi, HTS

• Speech Recognition applications – BBC (NewsHack and MGB Challenge), Ericsson (Just-in-time ASR), MediaEval, Browsing oral history (English Heritage)

• Voice banking and reconstruction

• homeService

• Challenges and Evaluations – Spoofing challenge at
Learning and adaptation

- Canonical acoustic models & adaptation
 - Adaptation of DNN acoustic models
- Canonical language models
 - Training, adaptation, decoding using RNNLMs
- Structuring diverse data
 - Corpora: new collections & structuring diverse data
- Techonology showcase
- RNN encoder-decoder for large vocabulary ASR
- Learning speech representations
Natural transcription

Technology

Theory

Applications

Speech

Recognition

Speech synthesis

Adaptation

Learning

Use of rich contexts

Speaker-informed DNN acoustic models

The MGB Challenge at ASRU-2015

Wide domain coverage

Environment models & multiple sound sources

Kaldi extensions

HTK extensions

Discriminative LIMABEAM

English Heritage Media Archives

homeService, donation, & banking

Technology showcase

Speech reconstruction,
Natural Synthesis

Theory

- Canonical acoustic models for TTS
- Reconstructing voices in the multiple-average-voice framework

Technology

- Multitask learning: DNN-based speech synthesis
- Model selection
- Sentence-level control

Applications

- Assessments of TTS: Are we using enough listeners to evaluate synthetic speech?

Theory

- Adaptation Learning

Technology

- Voice donation & banking
- Media Archives
- English Heritage

Applications

- Home Service
Applications

Technology

Speech Recognition

Speech Synthesis

Theory

Adaptation

Learning

English Heritage - Oral History demo

Voice banking and voice reconstruction

Voice reconstruction, donation, & banking

homeService

Media Archives

Technology showcase

ASR for people with disordered speech

BBC transcription
HTK ANN Extensions

• HTK 3.5 will support ANNs, maintaining compatibility with most existing functions.
 • Minimises the effort to reuse previous source code and tool
 • Allows transfer of e.g. SI/SD input transforms, MPE/MMI sequence training
 • 64-bit compatible

• Generic extensions
 • Flexible input feature configurations
 • ANN structures can be any directed acyclic graph
 • Stochastic gradient descent supporting frame/sequence training
 • CPU/GPU math kernels for ANNs

• Decoders extended to support tandem/hybrid systems, system combination
HTK Language Model extensions

- HTK v3.5 support for decoding RNN language models
 - Lattice rescoring using RNNLMs
 - Class / Full word outputs, interpolation with n-grams
 - Similar functionality for feed-forward NN LMs

- RNNLM estimation enhancements
 - bunch mode GPU training
 - full/class output RNN LMs
 - NCE training
 - variance regularised training
The Multi-Genre Broadcast (MGB) Challenge is a new evaluation of speech recognition, speaker diarization, and lightly supervised alignment, developed by the British Broadcasting Corporation (BBC). It is an official challenge of the 2015 IEEE Automatic Speech Recognition and Understanding Workshop.

The speech data is broad and multi-genre, spanning the whole range of BBC TV output, and represents a challenging task for speech technology.

The challenge will use a fixed training set of about 1,600 hours of broadcast audio, together with several hundred million words of subtitle text that will be provided to challenge participants, subject to signing a licence agreement with the BBC. The challenge will explore speech recognition and speaker diarization and linking of several episodes of the same programme. All tasks will also offer the opportunity to make use of supplied metadata including programme title, genre tag, and date/time of transmission, enabling novel approaches for domain adaptation to be applied.
Introduction

Do you have a method/algorithm to discriminate between human and synthetic speech (generated from speech synthesis or voice conversion systems)? If so, you are invited to take part in the Automatic Speaker Verification Spoofing and Countermeasures (ASVspoof) Challenge.

Previously, both spoofing attacks and countermeasures have been developed with full knowledge of a particular speaker verification system used for vulnerability assessments. Similarly, countermeasures have been developed with full knowledge of the spoofing attack which they are designed to detect. This is clearly unrepresentative on the real use case scenario in which the specific attack, much less the specific algorithm, can never been known a priori. It is thus likely that the prior work has as much over-exaggerated the threat of spoofing as it has the performance of countermeasures.

The ASVspoof challenge has been designed to help break this mould and to support, for the first time, independent assessments of vulnerabilities to spoofing and of countermeasure performance. While preventing as much as possible the inappropriate use of prior knowledge, the challenge aims to stimulate the development of generalised countermeasures with potential to detect varying and unforeseen spoofing attacks.

The first evaluation, ASVspoof 2015, is being held within the scope of a special session at INTERSPEECH 2015 and with a focus on spoofing detection. Participants are invited to submit spoofing detection results. You will be provided with a spoofing database along with a protocol for experiments. The spoofing database is generated from...
The Rise of Neural Nets
The Rise and Fall and Rise of Neural Nets
Neural network acoustic models (1990s)

- 1 hidden layer
- ~2000 hidden units
- ~40 CI phone outputs
- 9x39 MFCC inputs

Bourlard & Morgan, 1994

ERROR (%) vs MILLION PARAMETERS

DARPA RM 1992

Renals, Morgan, Cohen & Franco, ICASSP 1992
Neural network acoustic models (1990s)

~40 CI phone outputs
~2000 hidden units
~9x39 MFCC inputs

1 hidden layer

Bourlard & Morgan, 1994

Broadcast news 1998
20.8% WER
(best GMM-based system, 13.5%)
Cook, Christie, Ellis, Fosler-Lussier, Gotoh, Kingsbury, Morgan, Renals, Robinson, & Williams, DARPA, 1999
NN acoustic models

Limitations vs GMMs

- Computationally restricted to monophone outputs
 - CD-RNN factored over multiple networks – limited within-word context

- Training not easily parallelisable
 - experimental turnaround slower
 - systems less complex (fewer parameters)
 - RNN – <100k parameters
 - MLP – ~1M parameters

- Rapid adaptation hard (cf MLLR)
NN acoustic models

Benefits

- Fewer limitations on inputs
 - Correlated features
 - Multi-frame windows

- Discriminative training criteria (frame level and sequence level)

- Can be used to generate ‘higher-level’ features
 - tandem, posteriorgrams
 - bottleneck features
(Deep) neural network acoustic models (2010s)

- 9x39 MFCC inputs
- 3-8 hidden layers
- ~2000 hidden units
- ~6000 CD phone outputs

Dahl, Yu, Deng & Acero, IEEE TASLP 2012
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath & Kingsbury, IEEE SP Mag 2012
(Deep) neural network acoustic models (2010s)

~6000 CD phone outputs

WIDE

Softmax output layer

~2000 hidden units

DEEP

Automatically learned feature extraction

3-8 hidden layers

ACOUSTIC INPUT

Spectral? Cepstral? Derived features?

Dahl, Yu, Deng & Acero, IEEE TASLP 2012
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath & Kingsbury, IEEE SP Mag 2012
(Deep) neural network acoustic models (2010s)

- **ACOUSTIC INPUT**: Spectral? Cepstral? Derived features?
- **ADAPTATION**: Automatically learned feature extraction
- **DEEP**: ~2000 hidden units
- **WIDE**: ~6000 CD phone outputs

TRAINING
- optimisation, objective fn

WEIGHT SHARING
- adaptation, CNNs

ARCHITECTURES
- recurrent, convolutional, ...

ACTIVATION FUNCTIONS
- pooling, RELU, gated units
(Deep) neural network acoustic models (2010s)

- 3-8 hidden layers
- ~2000 hidden units
- ~6000 CD phone outputs
- 9x39 MFCC inputs

Activation Functions
- pooling, RELU, gated units

Weight Sharing
- adaptation, CNNs

Training
- optimisation, objective fn

Architecture
- recurrent, convolutional, …

Vocabulary
- Derived features?
Neural networks & NST

Edinburgh – Cambridge – Sheffield
Today’s agenda

• 9:30 – 11:20 Intro, 4 talks, poster spotlights
• 11:20 – 13:00 Coffee + demos/posters [LR4, ground floor]
• 13:00 – 14:15 Lunch
• 14:15 – 15:15 3 talks
• 15:15 – 15:45 Coffee
• 15:45 – 16:45 Discussion: Clinical, Media, Future Challenges
• 16:45 - 17:00 Wrap-up
• 17:00 – 18:30 Advisory board meeting
• 19:00 Dinner at Emmanuel College