The NST 'homeService' application: recent system and experimental developments

Heidi Christensen, Iñigo Casanuevo, Stuart Cunningham, Phil Green, Thomas Hain
homeService: a challenging application for Natural Speech Technology

Putting state-of-the-art speech techniques, developed by the NST research team, to use in people's homes.

Exemplar Applications
- richer, more natural interaction

Learning & Adaptation
- long-term adaptation
- environmental modelling
- adapt ASR models
- who spoke when annotations

Natural Synthesis
- situation appropriate voices
- distant microphone ASR
- elderly and dysarthric speech ASR

Natural Transcription
- NST General meeting, Edinburgh 23. May 2013
Two sides of homeService

User study / System development
- online, ‘in-the-field’ recognition
- hardware
- software
- design of study
- ethics permission

Experimental Work
- offline, lab-based recognition
- using existing databases
- develop methods for handling elderly and dysarthric speech ASR

NST General meeting, Edinburgh 23. May 2013
homeService study

- Speech-enabled assistive technology (v1: environmental control, later versions with more natural speech interactions)

- For people who can’t or don’t like using remote controls, switches, keyboard etc.

- Study outline (as per our NHS ethics application):
 - 10 users (about 5 elderly and 5 physically disabled)
 - Longitudinal study; each user involved for 1-2 years
 - ‘Virtuous circle’ design where the system capabilities (functionality- and modelling-wise) are improved as new data is collected.
 - Permission to save all audio recorded whilst the system is being used
 - Plus special ‘open-mic’ sessions of about an hour. This will be un-annotated but unique, conversational data!
homeService system - hardware

- Off-the-shelf components
- Custom-built software
- Typical devices are TV, PC, radio, lamp, curtains
homeService system - software

atHome (v1) system controls peripherals (microcone, tablet, infrared transmitter), and sends audio back to the lab.

atLab system receives audio, connects to ASR server and has “intelligence” to decide next actions.
Recognition “in-the-cloud”

Benefits:

- ASR acoustic and language models can be updated remotely
- Each user will have different system version and setup
- Enables remote login and monitoring
- System state is logged; all data is saved with time stamps
homeService demonstration
The other side of homeService

User study / System development
- online, ‘in-the-field’ recognition
- hardware
- software
- design of study
- ethics permission

Experimental Work
- offline, lab-based recognition
- using existing databases
- develop training strategy for dysarthric and elderly speech ASR
homeService experimental work

RESEARCH QUESTIONS:

• How can we best use methodologies and data from main-stream, typical speech ASR?

 • Investigate the use of state-of-the-art training strategies for dysarthric speech

 • Investigate use of typical speech knowledge for dysarthric speech

• How do we best ‘tune’ an ASR system to the non-typical elements of a dysarthric speaker?

 • Investigate the automatic derivation of pronunciation dictionaries for dysarthric speech

• How do we -- for a given speaker -- find the best `operating point’ for a personalised, homeService type ASR system?

 • Investigate ways of setting up initial system: choice of vocabulary, enrolment data requirement, etc.
Using methodologies and data from typical speech ASR

<table>
<thead>
<tr>
<th>Models</th>
<th>Absolute Word Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical speech meeting models</td>
<td>22.4%</td>
</tr>
<tr>
<td>UAspeech speaker-independent (SI) models</td>
<td>29.7%</td>
</tr>
<tr>
<td>USspeech speaker-dependent (SD) models</td>
<td>50.9%</td>
</tr>
<tr>
<td>UAspeech SI models + MAP adaptation</td>
<td>54.1%</td>
</tr>
<tr>
<td>UAspeech SI-MAP + Dynamic Neural Net features (providing typical speech phone knowledge)</td>
<td>62.5%</td>
</tr>
</tbody>
</table>

UAspeech: Largest English database of dysarthric speech, 18hrs, 16 speakers
Word Accuracy: isolated word task, word loop grammar restricted to one word recognised per utterance.

WE FOUND:

- Using standard triphone, HMMs trained according to typical speech training strategies works
- Adding Maximum A Posteriori (MAP) adaptation helps
- Adding further typical speech knowledge (through the use of neural net based features) helps
Using methodologies and data from typical speech ASR

<table>
<thead>
<tr>
<th>Models</th>
<th>Speaker Variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical speech meeting models</td>
<td>22.4% (0.6% - 70.2%)</td>
</tr>
<tr>
<td>UAspeech speaker-independent (SI) models</td>
<td>29.7% (3.2% - 68.5%)</td>
</tr>
<tr>
<td>USspeech speaker-dependent (SD) models</td>
<td>50.9% (9.0% - 85.6%)</td>
</tr>
<tr>
<td>UAspeech SI models + MAP adaptation</td>
<td>54.1% (8.3% - 89.6%)</td>
</tr>
<tr>
<td>UAspeech SI-MAP + Dynamic Neural Net features (providing typical speech phone knowledge)</td>
<td>62.5% (9.9% - 92.6%)</td>
</tr>
</tbody>
</table>

UAspeech: Largest, English database of dysarthric speech, 18hrs, 16 speakers
Word Accuracy: isolated word task, word loop grammar restricted to one word recognised per utterance.

WE FOUND:

- Using standard triphone, HMMs trained according to typical speech training strategies works
- Adding Maximum A Posteriori (MAP) adaptation helps
- Adding further typical speech knowledge (through the use of neural net based features) helps
Tuning an ASR system to the non-typical elements of a dysarthric speaker

WE FOUND:

• Customising the dictionary can improve performance
• Best results when modifying only words that tend to get mis-recognised for a speaker.
Finding the best `operating point’ for a particular speaker

WE FOUND:

- For this speaker, having about 10 examples of each word gets you a reasonable performance.
What next?

homeService system:

- First user to test system is imminent, followed by staggered start of remaining users over the next year
- First release of data to rest of NST
- Incorporation of NST-investigated, e.g., on environmental modelling, personalisation and adaptation into real systems.

more research questions:

- Elderly speech
- Long-term adaptation
- How to use un-annotated data (from the `open-mic’ sessions)
Thank you