A General ANN Extension for HTK
Chao Zhang & Phil Woodland
University of Cambridge

Abstract
- HTK-ANN enables ANNs with a general structure for acoustic modelling and feature extraction in HTK.
- Include recent ANN techniques, e.g., sequence training, stacking, speaker adaptation, and parameterised activation functions.
- Fully integrated to HTK, to reuse existing GMM-HMM methods for ANN-HMMs.
- HTK-ANN has been tested at CUED on data sets ranging from 3 to 1,000 hours and will be released as part of HTK 3.5 in 2015.

Design Principles
- To accommodate new models and methods, HTK-ANN should be designed should be as generic as possible.
- Flexible input feature configurations.
- Generic ANN model architectures.
- HTK-ANN should be compatible with existing HTK functions
 - To minimise the effort to reuse previous source code and tools.
 - To simplify the transfer of many technologies.
- HTK-ANN should be "research friendly".

Generic ANN Support
- Each ANN can have any number of layers.
 - The input vector to an ANN layer is defined by a feature mixture.
 - Each feature mixture has any number of feature elements.
 - A feature element defines a fragment of the input vector by source (acoustic features or ANN layers) and context shift set (integers for time difference).
- ANNs can be any directed cyclic graph (recurrent ANNs) but only directed acyclic graphs (feedforward ANNs) can be trained now.

ANN Training Facilities
- HTK ANN has both frame level (CE, MMSE) and sequence level (MMI, MPE) training criteria.
- ANN labels come from frame-to-label alignment (for CE & MMSE), feature files (for autoencoder), and lattice files (for MMI & MPE).
- Only standard EBP with SGD is available at present.
 - Gradient refinement: momentum, gradient clipping, weight decay, etc.
 - Learning rate schedulers: List, Exponential Decay, AdaGrad, modified New Bob, etc.

Data Cache
- Frame based shuffling: CE/MMSE for DNN and (unfolded) RNN.
- Utterance based shuffling: MMI, MPE, and MWE training.
- Batch of utterance level shuffling: RNN, ASGD.

Other Features
- Math kernels: CPU, MKL, and CUDA based new kernels for ANNs.
- Input transforms: compatible with HTK SI/SD input transforms.
- Speaker adaptation: an ANN parameter unit online replacement.
- Model Edit (using HHEd)
 - Insert/Remove/Initialise an ANN layer
 - Add/Delete a feature element to a feature mixture
 - Associate an ANN model to HMMs
- Decoders
 - HVite: tandem/hybrid system decoding/alignment/model marking
 - HDecode: tandem/hybrid system LVCSR decoding
 - HDecode.mod: tandem/hybrid system model marking
 - Joint decoder: log-linear combination of HTK systems (based on the same decision tree).

Building Hybrid SI System
- Steps of building CE based SI CD-DNN-HMMs using HTK
 - Produce desired tied state GMM-HMMs by decision tree tying (HHEd).
 - Generate ANN-HMMs by replacing GMMs with an ANN (HHEd).
 - Generate frame-to-state labels with a pre-trained system (HVite).
 - Train ANN-HMMs based on CE (HTrainSGD).
- Steps for CD-DNN-HMM MPE training
 - Generate num. & den. lattices (HLRescore & HDecode).
 - Phone mark num. & den. lattices (HVite or HDecode.mod).
 - Perform MPE sequence training (HTrainSGD).

ANN Front-ends for GMM-HMMs
- ANNs can be used as GMM-HMM front-ends by using a feature mixture to define the composition of the GMM-HMM input vector.
- HTK can accommodate a tandem SAT system as a single system.
 - Mean & variance normalisations are treated as activation functions.
 - SD parameters are replaceable according to speaker ids.

Experiments
- Systems were trained on 200 hours NST MGB Challenge Data and evaluated on BBC 1week development set (manual segmentation).
- DNNs are with 1k node hidden layers and 6k node output layers.